PE: A new approach to low risk patients

Dr Anand Senthi
Joondalup Health Campus ED

MBBS, MAppFin, GradCertPubHlth, FRACGP

@drsenthi

PE in ED

- Compared to what we were lead to believe:
 - It is more benign
 - Treatment is less effective
 - CT is less accurate and more risky
 - → Our current approach harms more than it helps
- Based on above
 - A new Test Threshold (TT) will be calculated
 - A new approach to low risk patients will be put forward

PE Test Threshold (TT)

 Pretest probability (PTP) of disease where benefits of investigation = harms of investigation

- If patient's PTP < TT</p>
 - \rightarrow more harm than benefit from investigation
 - → do not investigate

PE Test Threshold (TT)...

- Calculated using the Pauker and Kassirer method:
 - $T_{th} = (P_{pos/nd} \times R_{rx} + R_t)/(P_{pos/nd} \times R_{rx} + P_{pos/d} \times B_{rx})$

- Jeff Kline calculated 2% in 2004
 - → Created the PERC rule

- THE TEST THRESHOLD IS NOW OUTDATED!
 - Will recalculate it based on current data

More benign than we thought

- Previously untreated PE mortality was estimated at 18-35% based on old methodologically flawed studies of inpatients
 - Included extrapolations from autopsy studies

 Newer data on ED type patients suggest a far lower mortality

- Calder, Herbert, Henderson Ann EM 2005:
 - The mortality of untreated PE in ambulatory patients is likely < 5%, based on the following:

- PIOPED study, 1990
 - 30% were outpatients (ED or clinic)
 - 20 patients inadvertently not R(x) for d(x) PE
 - 1 died (5%)

- Nielsen et al, 1994 study
 - 87 ambulatory patients at a primary care facility
 - DVT pt's with V/Q proven silent PE's
 - Mortality = 0% in no R(x) group
 - Discussed later

- Several V/Q retrospective studies:
 - Examined long term outcome in untreated pts with low & intermediate probability scans (of which 12% & 34% respectively have PE from PIOPED)
 - 881 had low probability scans, 116 had intermediate scans
 - Approx 150 untreated PE's → 0 deaths

- Stein, 2000: Analysed 2 studies where AC withheld in patients with non diagnostic V/Q + serial negative LL imaging
 - 197 patients with untreated PE
 - 1 fatal PE = 0.5% mortality

What is the benefit of Anticoagulation (AC)?

Barritt & Jordan, Lancet 1960

- "Anticoagulation in the treatment of Pulmonary Embolism, a controlled trial"
- 35 Patients
- Clinically Diagnosed with PE:
 - Acute Right Sided HF or of pulmonary infarction using clinical exam, CXR and ECG. Pulmonary Infarction defined as:
 - ''pleuritic pain, haemoptysis, fever, pleural friction, loss of resonance at the lung base, and rales''
 - = Pneumonia

Barritt & Jordan trial ...

- No placebo, not blinded!
- No clear inclusion and exclusion criteria
- No information given comparing the 2 groups of pts
- All patients were confined to bed for 10 days!
- Most of the trial patients were very sick inpatients
 - not representative of most ED patients

Barritt & Jordan trial ...

- 5/19 patients died in the "no anticoagulation" group
 - Further audit of the autopsy data suggested PE was likely not the cause of death in 4 out of 5 of these patients
 - They all had major foci of infection including biliary sepsis, lung abscess and empyema.
- 1/16 patient died in treatment group from pneumonia + haemorrhage
- Stopped the trial early due to finding of "treatment benefit" → chance

If this trial was done today it would not even be published!

Nielsen et al, 1994

- Silent PE in Patients with DVT, Journal of Internal Medicine
- 87 patients with proven DVT, half with asymptomatic PE on V/Q
- Randomised to 3/12 anticoagulation v's 10/7 of oral NSAID
- Repeat V/Q on day 10 and day 60

Nielsen et al, 1994

- Results
 - → no difference in PE regression (45%)
 - \rightarrow no difference in mortality (1 v 0 patients)
- Remains the only RCT in actual PE patients in history and shows no benefit of AC
- Limitations
 - Small study
 - ? Relevance of asymptomatic PE

Benefit of Treatment?

Given:

- Mortality is <5%
- Anticoagulation has no known mortality reduction
- → Benefit of treatment assigned as 2.5%
 - Consistent with previous published TT calcs

Bleeding Risk

Carrier et al, Ann of Intern Med
 2010: Meta-analysis of bleeding
 risk specifically in VTE patients:

- Risks of AC with warfarin during first 3/12:
 - Major bleeding: 1.6%
 - Fatal bleeding 0.2%
 - May underestimate the risk

Contrast Risk...

- Mitchell et al 2010, 663 patients
- 1st ever prospective study of CT with contrast with paired creatinine measurements in ED patients
- 11% developed Contrast Induced Nephropathy (CIN),
 - 9% of whom developed severe renal failure
 - 2/3 of whom died due to renal failure
- Overall 0.6% mortality from contrast

Contrast Risk Opposing View

- Radiology, April 2013
 - Macdonald et al:
 - Meta-analysis of controlled retrospective studies
 - Gross selection bias
 - → renal protective effect of contrast!
 - 2 papers Macdonald et al & Davenport et al attempted to adjust for this gross bias with "attribute matching"

TT: Contrast Risk

- The controlled studies are unhelpful
- TT calc: contrast risk = 0.1%
 - heavily discounted from 0.6% from the uncontrolled prospective study

CTPA Accuracy

- PIOPED II 2006, NEJM Multidetector CT
 - 83% sensitivity, 96% specificity

CTPA Accuracy

- Positive Predictive Value varies with PTP
 - High Risk = 96%
 - Moderate Risk = 92%
 - Low Risk = 58% (False Positives = 42%)
 - Dependant on location
 - Main or Lobar = 97%
 - Segmental = 68%
 - Subsegmental = 25%
 - Note the false positive rate doesn't take into account the possibility of true positives being incidental
 - Further investigation to confirm segmental/sub-segmental PE's in low risk patients should be considered
 - European Society Cardiology & PIOPED II

Reworking the Test Threshold

- Using Mortality Risks and Benefits
 - Risk of Test = 0.13%
 - (Contrast Risk (0.1%) +Radiation Risk (0.03%))
 - AC Risk = 0.2%
 - AC Benefit = 2.5%
 - False Positive rate = 42%

Test Threshold = 10%

Lessler & Pines Test Threshold

Annals EM 2010

- Used more complex Markov node model
 - Looked at both mortality and morbidity
 - Using Quality Adjusted Life Years lost

- Then later: using updated contrast risk figures but 0% AC risk
 - TT = 20%

Summarising Risk v Benefit of Investigation

Newman & Schriger, Rethinking Testing for PE: Less is More,
 Annals of Emergency Medicine, June 2011

• "The current model of testing causes roughly 6 times as many deaths as lives saved"

 "A powerful first step would be to broadly acknowledge that testing under the current paradigm is a dubious, largely harmful endeavour and there must be an acceptable miss rate"

Who is below the TT

PERC Rule

- Singh, PERC Meta-analysis, Ann of EM 2013
 - 15,000 patients in 6 countries
 - PE miss rate is 0.3%
- Endorsed by ACEP
 - Fesmire et al, Ann Emerg Med 2011

Wells <2

- Wells Score traditionally used to work out a PTP to decide which investigation to perform
- These are patients who you don't believe have PE but want to exclude
- What PTP does Wells <2 represent in ED patients?</p>
 - Combined 2 meta-analyses
 - Ceriani, J Thromb Haemost 2010
 - Lucassen, Ann Intern Med 2011
 - Excluded retrospective and inpatient studies

Wells <2 table

Prospective evaluations of Wells Score (excluding inpatients)

		All Patients			Wells < 2 Patients		
Study	Year	N in Stud	Region	Study PE Prev	N	PE	PTP
Wells et al	2001	930	Canada	9%	527	7	1.3%
Wolf et al	2004	134	US	12%	59	1	1.7%
Anderson et al	2005	858	Canada	10%	479	10	2.1%
Kabrhel et al	2005	607	US	10%	325	13	4.0%
Kline & Hogg	2006	178	US	14%	110	3	2.7%
Kline et al	2006	2302	US	5%	1704	50	2.9%
Kabrhel et al	2009	7940	US	7%	5482	173	3.2%
Legnani et al	2010	346	Europe+ N.America	15%	87	7	8.0%
Penaloza et al	2011	339	Belgium	19%	157	4	2.5%
Totals		13634			8930	268	3.00%

Wells <2 post PERC & d-dimer

- Wells <2 = 3.0% PTP
 - → not PERC negative (97% sens, 22% spec)
 - **→**3.7%
 - Positive d-dimer (98% sens, 45% spec)
 - → 6.4%

Still below 10% TT

Prognostication

- The patients in the source studies demonstrating untreated PE mortality were likely to be of low prognostic risk – it is safest to assume so.
- Therefore prudent to only consider exclusion of Wells <2 patients who are at *low prognostic risk*:
 - Well patients
 - Relatively normal vital signs
 - No major cardiorespiratory comorbidities
 - Absence of ongoing VTE risk factors

PPP approach

- Pre-test Probability assessment
- Prognostication
- Patient-centred shared decision making

Evaluate **P**re-test probability of PE Not low Evaluate **P**rognostic Risk — Proceed to standard PE Not low I(x) pathway Low Patient-centred shared decision making Exclusion from I(x)

Figure 1: PPP PE Diagnostic Approach

Patient-centred decision making

- Decisions of uncertainty should be filtered through the risk tolerance of the patient not the clinician
- Numerous studies demonstrate when patients are faced with a very low risk of potentially serious event they usually choose to accept this risk
- This essentially represents an informed consent process regarding further investigation

Patient-centred decision making ...

- This will achieve 2 aims:
 - Empower the patient in their healthcare
 - Reduce unnecessary investigation that likely exposes the patient to more harm than benefit
- Even a conservative explanation of the risk-benefit will achieve this

Is your patient above the TT?

- The focus on definitively proving a patient is below TT is misguided
- We are guided by the principal of "1st do no harm"
- Under this principal the clinician must be confident the patient is above the TT before investigating
- This confidence simply cannot exist for low PTP patients with low prognostic risk
 - They have an approx 1/1000 risk of death from PE
- It is arguably unethical to routinely investigate this group of patients without informed consent

So what's the new approach?

• Giving patients a choice!

Questions?

@drsenthi

- Emergucate.com
 - Talk posted here with all references